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ABSTRACT
Conjunctive queries with predicates in the form of compar-
isons that span multiple relations have regained interest re-
cently, due to their relevance in OLAP queries, spatiotem-
poral databases, and machine learning over relational data.
The standard technique, predicate pushdown, has limited
e�cacy on such comparisons. A technique by Willard can
be used to process short comparisons that are adjacent in
the join tree in time linear in the input size plus output size.
In this paper, we describe a new algorithm for evaluating
conjunctive queries with both short and long comparisons,
and identify an acyclic condition under which linear time can
be achieved. We have also implemented the new algorithm
on top of Spark, and our experimental results demonstrate
order-of-magnitude speedups over SparkSQL on a variety of
graph patterns and analytical queries.

1. INTRODUCTION
The asymptotically optimal running time for evaluating a

query is Õ(N + OUT), where N is the input size, OUT is
the output size, and the Õ notation suppresses a logO(1) N
factor. This bound, which is often referred to as linear time,
can be considered instance-optimal, because one has to read
the input (assuming no indexes are pre-built) and write the
output. Thus, a fundamental problem in query processing is
to identify the class of queries that can be evaluated in linear
time. A 40-year old result by Yannakakis [20] tells us that
linear time can be achieved for ↵-acyclic conjunctive queries
(CQs), and recent negative results [2, 16] suggest that this
is also probably the best one can hope for.

A CQ corresponds to a (natural) join-projection query
in SQL. Another important relational operator is selection,
which involves two types of predicates: type-1, involving at-
tributes from one relation, and type-2, spanning two or more
relations. The former can be trivially handled by scanning
the relation in linear time; alternatively, indexes can be pre-
built over frequently queried attributes to further reduce

© ACM 2023. This is a minor revision of the paper entitled Con-
junctive Queries with Comparisons, published in SIGMOD’ 22, ISBN
978-1-4503-9249-5/22/06, June 12-17, 2022, Philadelphia, PA, USA,
DOI: https://doi.org/10.1145/3514221.3517830.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 2023 ACM 0001-0782/08/0X00 ...$5.00.

query processing time, on which there is extensive litera-
ture. However, type-2 predicates have received less atten-
tion. The naive approach for handling this type of predicate
is to compute the join first and then filter the results with
the predicate. A common query optimization technique is
predicate pushdown, where the predicate is pushed to right
after the involved relations have been joined.

Note that if a type-2 predicate is an equality, it can be
rewritten as a (natural) join condition, so we consider in-
equalities or comparisons, with , <,�, > as comparisons,
and 6= as inequality. Such queries are related to OLAP
queries, spatiotemporal queries, and machine learning over
relational data. The following gives an example of a tempo-
ral query.

Example 1.1. Consider a toy database that stores a col-
laboration network using the scheme R(P1, P2, T ). Any tuple
t = (p1, p2, t) 2 R indicates that the person p1 has collabora-
tion with p2 starting from time t. The following query with
a type-2 predicate, written in a rule-based form, will try to
join three relations R1, R2, R3, which all follow the schema
R. The query will find all (p1, p2, p3, p4) combinations, such
that p2 has collaboration with both p1 and p3, where first
with p1 and then with p3; meanwhile, p3 has collaboration
with p4:

R1(p1, p2, t1), R2(p2, p3, t2), R3(p3, p4, t3), t1  t2.

This query (the CQ part) is ↵-acyclic. For the query plan
(R1 1 R2) 1 R3, the predicate t1  t2 can be pushed to after
R1 1 R2. However, the running time of this query plan
(with or without predicate pushdown) is no longer linear,
since the predicate may make the output size significantly
smaller than the join size. To see this, just imagine the case
where no join results satisfy the predicate t1  t2. In this
case, OUT = 0 but the intermediate join size |R1 1 R2| can
be as large as ⌦(N2).

A simple idea [12, 19] to reduce the time to (near) linear
is to first push down the predicate, and then compute the
sub-query

R1(p1, p2, t1), R2(p2, p3, t2), t1  t2

without computing the join R1 1 R2: Group the tuples in
R1 and R2 by p2. For each group, sort the t1 values in
ascending order. Then for each t2, scan the sorted list until
meeting some t1 > t2. The cost is thus Õ(|R1|+ |R2|), plus
the actual size of the sub-query result, hence linear. The last
join with R3 preserves linearity following the same argument
as in [20].
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The predicate t1  t2, as we define more formally in Sec-
tion 4, is a short comparison. The following example fea-
tures a long one:

Example 1.2. Consider the following query with predi-
cate x1  x4:

R1(x1, x2), R2(x2, x3), R3(x3, x4), x1  x4.

Note that a long comparison like x1  x4 cannot be pushed
down. By decomposing the query to multiple parts, each
plugged into an appropriately chosen generalized hypertree
decomposition (GHD) [7] and combined with the idea from
Example 1.1, Abo Khamis et al. [12] are able to reduce the
running time of this query to Õ(N1.5 +OUT), but it is not
clear if the algorithm is practical.

In this paper, we improve the running time of the query
above to linear. More precisely, after Õ(N)-time prepro-
cessing, our algorithm can enumerate the query results with
constant delay (formal definition given in Section 4.2). This
immediately implies Õ(N + OUT) total time; in addition,
it means that the Boolean query (i.e., deciding if the query
result is empty) can be answered in Õ(N) time.

Our techniques are not restricted to this particular query.
We are able to achieve linear time for a natural class of
acyclic conjunctive queries with comparisons (CQCs). On a
high level, we require the relations to satisfy the ↵-acyclicity
condition as in [20], while the comparisons should be Berge-
acyclic, another popular definition of acyclicity for hyper-
graphs. The formal definition is given in Section 4, followed
by our main algorithm for full CQCs described in Section 5.
Such an algorithm can also handle non-full CQCs (i.e., join-
selection-projection queries). Due to the space constraint,
the details are left in [18]. For queries outside this class, we
show in Section 6 how to combine our techniques with the
GHD framework to obtain improved running times over [12].

Our algorithm consists of a series of reductions, each re-
ducing the “length” of a long comparison, until it becomes
a short one. In some sense, Abo Khamis et al. [12] also try
to reduce the length, but only use the GHD framework to
group multiple relations into bags, inevitably leading to su-
perlinear running times. The key in the reductions is that
we cannot just rewrite the query, but also transform the data
(in linear time). The transformation will happen twice: once
in the reduction, and once in “unwinding” the reduction.

Besides asymptotic improvements, our algorithm is also
very practical. In fact, the transformations use some stan-
dard relational operations that are supported in all DBMSs.
To verify its practical performance, we implement our al-
gorithm in Spark, which gives us the additional benefits of
parallelism, scalability, and fault tolerance. Our implemen-
tation uses only standard RDD operations without any mod-
ification to the Spark core. Experimental results (Section
7) show that our algorithm o↵ers an order-of-magnitude im-
provement over SparkSQL, especially for queries with highly
selective type-2 predicates.

2. RELATED WORK
Recently, evaluating type-2 predicates over a CQ has re-

gained interest, with several papers [9,12,17] addressing the
issue. In particular, Abo Khamis et al. [12] make a good case
by showing that many machine learning tasks over relational
data can be formulated as queries with type-2 comparisons.

The idea in Example 1.1 is perhaps the first technique
(other than predicate pushdown) for dealing with type-2
comparisons. It was proposed by Willard [19], who also
generalized it to ↵-acyclic CQs with multiple comparisons,
but all comparisons must be short. Unaware of his paper,
the recent works [9, 12, 17] rediscovered Willard’s idea and
then extended it in various ways. Idris et al. [9] study the
dynamic version of the problem; in the static setting, their
algorithm is essentially the same as Willard’s. Tziavelis et
al. [17] study ranked enumeration of full acyclic CQCs with
only short comparisons; their algorithm for the unranked
version also achieves Õ(N + OUT) time, but the logarith-
mic factor is larger than Willard’s. All these papers [9,17,19]
only consider short comparisons. Abo Khamis et al. [12]
combine GHDs and Willard’s technique to handle long com-
parisons as shown in Example 1.2, but the running time
is superlinear (more examples comparing our result and [12]
are provided in Section 6). They also generalize their frame-
work to handle aggregation queries, which are important for
machine learning tasks.

Koutris et al. [13] and Abo Khamis et al. [10] study CQs
with inequalities ( 6=). Such a predicate, e.g., x1 6= x4, can
be written as the disjunction of two comparisons: x1 <
x4 _ x1 > x4, which turns the query into a union of CQCs.
Then by the argument above, our algorithm can also handle
such queries. However, they are interested in the combined
complexity where the query size is not taken as a constant.
Under this setting, this simple conversion results in expo-
nentially (in the number of inequalities) many CQCs, thus
our result is not directly comparable to theirs.

3. PRELIMINARIES

3.1 Conjunctive Queries with Comparisons
We follow the notation in [1]. Let [n] = {1, . . . , n}. Let R

be a relational database. A conjunctive query with compar-
ison (CQC) has the form

ans(ȳ) R1(x̄1), . . . , Rn(x̄n), C1, . . . , Cm (1)

where R1, R2, . . . are relations in R, and x̄1, . . . , x̄n are
their variables/attributes. We use var(q) = x̄1 [ · · · [ x̄n

to denote the set of variables appearing in the body of the
query q. Without loss of generality, we assume that there are
no self-joins; for queries with self-joins, one can always make
logical copies of the relation. It is required that the output
attributes ȳ ✓ var(q). If ȳ = var(q), the query is said to
be full ; in this case we may omit writing the head ans(ȳ).
Let dom(x) be the domain of variable x, and let dom(x̄) be
the Cartesian product of all dom(x)’s for x 2 x̄. Each Cj ,
for j 2 [m], is a comparison of the form fj(x̄aj )  gj(x̄bj ),
where aj (resp. bj) 2 [n], and fj (resp. gj) is a function
mapping dom(x̄aj ) (resp. dom(x̄bj )) to R.

Examples 1.1 and 1.2 are simple examples of full CQCs.
Below we give a more complicated, non-full CQC.

Example 3.1. The query

ans(x1, x2, x3, x4, x7) R1(x1, x2), R2(x2, x3, x7),

R3(x2, x3, x4, x5), R4(x3, x6),

R5(x3, x8), C1 : x1 � x2  x3x4 + 2,

C2 : min{2x2, x7}  x6, C3 : x2  x8

fits the definition of a CQC by setting
a1 = 1, b1 = 3, f1(x̄1) = x1 � x2, g1(x̄3) = x3x4 + 2;
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a2 = 2, b2 = 4, f2(x̄2) = min{2x2, x7}, g2(x̄4) = x6;
a3 = 3, b3 = 5, f3(x̄3) = x2, g3(x̄5) = x8.

Note that for comparison Cj , the indices aj , bj of the two
involved relations might not be unique. For instance, for the
query above, a3 could also be 1 or 2. In general, aj (resp.
bj) can be any i such that the variables in fj (resp. gj) are
contained in x̄i. After fixing any valid aj , bj , we say that Cj

is incident to Raj and Rbj . While we consider comparisons
incident to two relations in the bulk of the paper, we show
how comparisons involving more than two relations can be
handled in Section 6 (cf. Example 6.2).

We now define the semantics of CQCs. Given a set of
variables x̄, a tuple t over x̄ is an assignment of values from
dom(x̄) to x̄. For any ȳ, define t(ȳ) as the tuple restricted
to the variables in ȳ.

Given a CQC q in the form of (1), the query results of q
on a database instance R are:

q(R) =

8
<

:t(ȳ)

������

t is a tuple over var(q),
t(x̄i) 2 Ri(x̄i) 8i 2 [n],
fj(t(x̄aj ))  gj(t(x̄bj )) 8j 2 [m]

9
=

; . (2)

The restriction of considering only comparisons in the
form of fj(x̄aj )  gj(x̄bj ) is without loss of generality: the
comparison fj(x̄aj ) � gj(x̄bj ) can be written as �fj(x̄aj ) 
�gj(x̄bj ); the comparison fj(x̄aj ) < gj(x̄bj ) can be writ-
ten as fj(x̄aj ) + "  gj(x̄bj ) for infinitesimally small ". An
inequality fj(x̄aj ) 6= gj(x̄bj ) can be written as fj(x̄aj ) >
gj(x̄bj ) _ fj(x̄aj ) < gj(x̄bj ).

When the variables of fj(x̄aj ) and gj(x̄bj ) are understood
from the context, given a tuple t whose attributes contain
x̄aj and/or x̄bj , we often simply write fj(t), gj(t) instead of
fj(t(x̄aj )), gj(t(x̄bj )).

3.2 Orthogonal Range Searching
We will make use of some classical results on orthogonal

range searching. Let (S,�) be a commutative semigroup,
where S is the ground set and � is its “addition” operator.
Let P be a set of N points in d-dimensional space, where
each point p 2 P is associated with a weight w(p) 2 S. The
problem has two versions. In the aggregation version, one
aims at building a data structure on P such that for any
orthogonal query rectangle B, the sum

L
p2P\B

w(p) can
be returned e�ciently. In the reporting version, the goal
is to report all points in P \ B. Multi-dimensional range
trees can solve both versions [3, 6]. In particular, all our
queries will be one-sided, i.e., the constraint is in the form
of (�1, x] or [x,1) in each dimension. For such queries,
a range tree with fractional cascading [4] can be built in
O(N logmax{d�1,1} N) time so that any aggregation query
can be answered in O(logmax{d�1,1} N) time and any report-
ing query can be answered in O(logmax{d�1,1} N + |P \B|)
time.

3.3 Complexity Measures
We adopt the standard RAM model of computation and

measure the running time in terms of data complexity, i.e.,
the query size |Q| is treated as a constant, while using the the
input size N =

P
i
|Ri(x̄i)| and output size OUT = |q(R)|

as asymptotic parameters. Note that OUT can be much
smaller than that of the CQ without the comparisons.

We also require a linear-space index structure that can
support key lookups in constant time, and enumerate all

tuples corresponding to a given key with constant delay. A
standard implementation of such an index is a hash table [5],
which can also be built in expected linear time.

4. ACYCLICITY OF CQCS

4.1 Acyclic CQs and CQCs
The acyclicity of a CQ q is defined by the ↵-acyclicity of

its relation hypergraph, denoted R(q). The vertices of R(q)
correspond to the variables and its hyperedges correspond
to the relations. For example, Figure 1(a) shows the relation
hypergraph of the query in Example 3.1. The CQ is said to
be acyclic if R(q) is ↵-acyclic, i.e., the relations of q admit
a join tree.

A join tree is a tree T with n vertices corresponding to the
relations {Ri(x̄i)}i. For any i, j 2 [n], let PT (i, j) denote the
unique path between i and j in the join tree T . It is required
that x̄i \ x̄j ✓ x̄k for every node k 2 PT (i, j). Join trees are
not unique, and we use T (q) to denote the set of all valid
join trees of q. One can use the GYO algorithm [1, 8, 21] to
find all its join trees. For example, Figure 1(b) and 1(c) give
two possible join trees of the query in Example 3.1.

For a CQC q, we consider a second hypergraph, called its
comparison hypergraph, which is defined after fixing a join
tree T of q. After fixing T , for each comparison Cj , we set
its two incident relations Raj , Rbj such that among all valid
(aj , bj) pairs, PT (aj , bj) is the shortest. For instance, for
comparison C3 in Example 3.1, we would set a3 = 3, b3 = 5
if using the join tree in Figure 1(b), while set a3 = 2, b3 = 5
if using the join tree in Figure 1(c). A comparison is said
to be short if it is incident to two adjacent nodes of the join
tree, otherwise long.

Then the comparison hypergraph of q induced by a given
join tree T , denoted as C(q, T ), is defined as follows. The ver-
tices of C(q, T ) correspond to the edges of T , while its hyper-
edges correspond to the comparisons in q. More precisely, a
vertex in C(q, T ), namely an edge (u, v) of T , belongs to a hy-
peredge of C(q, T ), namely a comparison fj(x̄aj )  gj(x̄bj ),
if (u, v) 2 PT (aj , bj) (abusing notation, we use PT to denote
either the set of nodes or the set of edges on the path de-
pending on the context). Thus, a short comparison becomes
a singleton hyperedge in C(q, T ), and a self-comparison, i.e.,
one where aj = bj , becomes an empty hyperedge. Mean-
while, some vertices in C(q, T ) may not belong to any hy-
peredge.

Figure 1(d) shows the comparison hypergraph of the CQC
in Example 3.1 after fixing the join tree in Figure 1(b).

We say that a CQC q is acyclic, if its relation hypergraph
R(q) is ↵-acyclic, and there exists a join tree T such that
C(q, T ) is Berge-acyclic. Such a T is said to support the
comparisons in q. Recall that a hypergraph is Berge-acyclic
if and only if there is at most one simple path between any
two vertices. Recall that the vertices in C(q, T ) are the edges
of T , so the Berge-acyclicity of C(q, T ) means that there is
at most one way to go from any one edge of T to another
edge via a sequence of steps, where each step is covered by
a comparison. Berge-acyclicity is more restrictive than ↵-
acyclicity: the former implies the latter, but not vice versa.
Note that singleton and empty hyperedges (i.e., short and
self comparisons) do not a↵ect the Berge-acyclicity of a hy-
pergraph.

Examples 1.1, 1.2, 3.1 are all acyclic CQCs; below we give
one that is not.
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hypergraph
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E4

R2(x2, x3, x7)

R3(x2, x3, x4, x5)
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(b) Join tree

R2(x2, x3, x7)

R3(x2, x3, x4, x5) R1(x1, x2)

R4(x3, x6) R5(x3, x8)

(c) Another join tree

E1
E2

E3E4

C1

C2

C3

(d) Comparison
hypergraph of b

Figure 1: Relational hypergraph, join trees and comparison hypergraph for the
query in Example 3.1.

E1 E3
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R2(x1, x4, x5)

R3(x2, x6, x7)

R4(x3, x8, x9)

(a) Join tree

E1

E2

E3

C3

C1

C2

(b) Comparison
Hypergraph

Figure 2: Join tree and comparison hyper-
graph for query in Example 4.1.

Example 4.1. The query

ans(x1, x2, x3) R1(x1, x2, x3), R2(x1, x4, x5),

R3(x2, x6, x7), R4(x3, x8, x9),

C1 : x4  x6, C2 : x7  x8, C3 : x9  x5

is not an acyclic CQC, although its relational hypergraph is
acyclic, as witnessed by the join tree in Figure 2(a), which is
in fact its only possible join tree. However, the comparison
hypergraph induced by this join tree is Figure 2(b), which is
not Berge-cyclic.

Given an acyclic CQC q and a join tree T supporting its
comparisons, consider the induced comparison hypergraph
C(q, T ). Each edge (u, v) in T corresponds to a vertex in
C(q, T ), and we use d(u, v) to denote its degree in C(q, T ), i.e.,
the number of hyperedges of C(q, T ) that contain (u, v). The
degree of C(q, T ) is the maximum degree of all (u, v) 2 T ,
and we define the degree of q as the minimum degree of
C(q, T ) over all join trees T supporting the comparison of q,
denoted as dq. For example, the degree of CQC in Example
3.1 is 1, with the join tree in Figure 1(b) being the T that
attains the minimum degree of C(q, T ). On the other hand,
the join tree in Figure 1(c) would lead to a C(q, T ) of degree
2 (the edge between R2 and R3 would be contained in two
hyperedges). The degree of q, as well as the supporting join
tree T , can be found by enumerating all possible join trees
of q using the GYO algorithm. This takes time exponential
in the size of the query, but independent to the size of the
data. Henceforth, we assume that the degree of q and the
supporting join tree T are given.

Finally, it is easy to see that an ↵-acyclic CQ is just a
special acyclic CQC of degree 0 by our definition.

4.2 Constant-delay Enumeration
Acyclic full CQs can be evaluated in Õ(N+OUT) time by

the well-known Yannakakis algorithm [20]. This algorithm
has been extended to perform constant delay enumeration
(CDE) [2]. A CDE data structure is one that can be built,
ideally in Õ(N) time, from which the query results q(R) can
be enumerated (without repetition) with constant delay, i.e.,
the time between the start of the enumeration process and
enumerating the first result in q(R), the time between enu-
merating any two consecutive results, and the time between
the last result and the end of the enumeration process are all
bounded by a constant. In this paper, we relax the require-
ment slightly, by allowing the delay to be Õ(1). Note that a
CDE data structure immediately leads to an Õ(N +OUT)-
time algorithm for computing q(R), but not necessarily vice
versa.

The design of the CDE algorithm is based on the sim-
ple observation that, after the Yannakakis algorithm has

completed the semi-join reductions that remove all dangling
tuples, every remaining tuple is guaranteed to produce at
least one join result. Thus, the join results q(R) can be
enumerated with constant delay by performing a pre-order
traversal along the join tree T equipped with appropriate
hash tables. However, the algorithm fails on CQCs, because
the semi-join reductions cannot ensure that the tuples will
satisfy the comparisons. Thus, during the enumeration pro-
cess, some tuples that do not satisfy the comparisons need
to be skipped, breaking the Õ(1)-delay requirement.

Example 4.2. Figure 3(a) illustrates the issue for the
query in Example 1.2 using the join tree R1-R2-R3. The
tuples in white are those after the semijoin reduction. How-
ever, the tuple (3, 2) in R1, (2, 1) in R2, and (1, 0) in R3

do not appear in any valid query results due to the predicate
x1  x4. If these tuples are not skipped during the enu-
meration, this could lead to an O(N)-delay. For example,
starting from the tuple (2, 1) in R2, the pre-order traversal
has to check all tuples in R1 against (1, 0) in R3 without
enumerating any valid query results.

5. FULL ACYCLIC CQCs
In this section, we address the issue in Example 4.2 and

present a CDE algorithm for a full acyclic CQC q. Our
algorithm will use a series of reductions. For each reduction
q ! q0,R! R0, we will ensure that

1. q0 is still an acyclic CQC;

2. R0 can be computed from R in Õ(N) time; and

3. given a CDE structure of q0(R0) and some other data
structures on R that can be built in Õ(N) time, we
can enumerate q(R) with delay Õ(1);

The base case is when q has only one relation and no
comparisons, for which the CDE structure is just the relation
itself.

The simplest reduction is to remove all self-comparisons
(i.e., type-1 predicates). For this reduction, q0 is just q after
dropping all self-comparisons, while R0 is R after filtering
each relation with all the self-comparisons on that relation.
This clearly satisfies the three properties above. We will
always perform this reduction when applicable. Thus, when
describing the other reduction rules below, we may assume
that q has no self-comparisons. Other reductions will each
remove one relation from q, thus it takes at most 2(n � 1)
reductions to reach the base case for a CQC over n relations.
As n is taken as a constant, the overall preprocessing cost
would be Õ(N) and the enumeration delay would be Õ(1).
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(a) Standard semijoin re-
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3 3

[x1x2x3x4]
1 2 2 2
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(b) New Approach

Figure 3: A running example for the query in Example 4.2.

5.1 Reducible Relations
Given an acyclic CQC q and a join tree T , a leaf node (re-

lation) R is one with only one neighbor in T . That neighbor
is called its parent, denoted Rp.

We will always perform a reduction from a reducible rela-
tion, defined as follows.

Definition 5.1. For an acyclic CQC q and a join tree T
supporting its comparisons, a relation R is reducible if (1)
R is a leaf in T ; and (2) R is incident to at most one long
comparison.

The following structural result is important for our devel-
opment.

Lemma 5.2. Given any acyclic CQC q and any join tree
T supporting its comparisons, there exists a reducible rela-
tion.

Let R be a reducible relation. We apply di↵erent reduc-
tions depending on the number of incident comparisons on
R, as described below.

5.2 No Incident Comparisons
If R has no incident comparisons, then we perform a stan-

dard semi-join reduction as in the Yannakakis algorithm, i.e.,
we replace Rp with R0

p := Rp nR and then remove R. The
correctness of this reduction has been proved in [2], but we
rephrase the arguments under our framework, i.e., it satis-
fies the three properties stated at the beginning of Section
5. Detailed analysis can be found in [18].

5.3 One Incident Comparison
Suppose C : f(var(R))  g(x̄b), for some b 2 [n], is the

only comparison incident to R, which may be either long or
short. Define

R0

p(var(Rp),mf) :=

⇢✓
tp, min

t2R,t1tp 6=;

f(t)

◆����tp 2 Rp

�
, (3)

where mf is a new helper attribute. We perform the reduc-
tion:

• R! R0: replace Rp with R0

p;

• q ! q0: drop R, and replace C with C0 : mf  g(x̄b).

Note that since mf is an attribute in R0

p, comparison C0 is
now between R0

p and R0

b. If C is a short comparison, C0

will become a self-comparison. If so, we will apply the self-
comparison-removal reduction immediately.

For the symmetric case where C is f(x̄a)  g(var(R)) for
some a 2 [n], we change min f(t) to max g(t) in (3), and
the list associated with each z̄ =  will be stored in the
decreasing order of g(·).

Example 5.3. Figure 3(b) illustrates how the reduction
works on the query in Example 1.2. Suppose we reduce R1

first (the other reducible relation is R3). This appends helper
attribute mf1 to R2 while removing the tuple (1, 2) in R2.
Such a reduction can be written in SQL as follows:

SELECT x2, x3, min(x1) as mf1
FROM R1, R2
WHERE R1.x2 = R2.x2

Suppose we reduce R3 next (we could also reduce R2, which
is now reducible). This appends mf2 to R2. The reduction
can be written in SQL as follows, where R0

2 represents the
relation R2 after applying the first reduction:

SELECT x2, x3, mf1, max(x4) as mf2
FROM R

0

2, R3
WHERE R

0

2.x3 = R3.x3

After this step, the comparison becomes a self-comparison
mf1  mf2. The next immediate reduction checks this self-
comparison on R2, removing the tuple (2, 1). Now we have
reached the base case with only R2 and no comparisons.

To enumerate the query results, we rewind the reductions.
After enumerating each tuple from R2 (in this example, only
one tuple remains in R2), we first find all tuples in R1 with
x2 = 2 and x1  2. By using the hash table of R2 on x2

and visiting the tuples in sorted order of x1, these tuples
can be retrieved with constant delay. Such procedure can be
considered as evaluating the following SQL query (assume
R00

2 to be the relation after applying condition mf1  mf2):

SELECT x1, x2, x3
FROM R

00

2 , R1
WHERE R

00

2 .x2 = R1.x2 and R1.x1  R2.mf2

Then, for each partial join result from R1 1 R2, we find
all join tuples in R3 that satisfy x1  x4. Similarly, as
all tuples in R3 are grouped by x3 and sorted in descending
order of x4, such tuples can be retrieved with constant delay.

5.4 Two or More Incident Comparisons
Now we consider the general case. Let R be a reducible

relation with d � 2 incident comparisons, which include at
most one long comparison. Let C1, . . . , Cd be the d com-
parisons incident on R. Without loss of generality, we as-
sume each Cj has the form fj(var(R))  gj(x̄bj ), where
bj 2 [n] for each j 2 [d]. If any Cj has the form fj(x̄aj ) 
gj(var(R)), the case can be handled symmetrically. Sup-
pose C1 is the only comparison that might be long, while
C2, . . . , Cd are all short comparisons. The reduction is sim-
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[x3x4x5]
1 2 1
1 4 1
2 2 1

[x1x2x3]
1 3 1
2 2 1
4 1 1
5 2 2

[x5x6]
1 1
1 2
2 3

[mf1x3x4x5]
2 1 2 1
1 1 4 1
? 2 2 1

x3 ! (x1, x2)

1
(1, 3)
(2, 2)
(4, 1)

2 (5, 2)

[x5x6]
1 1
1 2
2 3

[mf1x3x4x5mf2]
2 1 2 1 2
1 1 4 1 2
? 2 2 1 ?

x3 ! (x1, x2)

1
(1, 3)
(2, 2)
(4, 1)

2 (5, 2)

[x5x6]
1 1
1 2
2 3

[x1x2x3x4x5mf2]
4 1 1 4 1 2

[x5x6]
1 1
1 2
2 3

[x1x2x3x4x5x6]
4 1 1 4 1 2

Figure 4: A running example for the query in Example 5.4

ilar to the one-incident-comparison case. Define

R0
p(var(Rp),mf) :=

8
><

>:

0

B@tp, min
t2R,

�C2^···^Cd
t1tp 6=;

f1(t)

1

CA

�������
tp 2 Rp

9
>=

>;
, (4)

where mf is a new helper attribute. Note that C2, . . . , Cd

are all short comparisons, i.e., they are between t and tp, so
the selection condition in (4) is well defined. In particular,
if for a tp 2 Rp, no t satisfies the condition under the min,
tp will not be included in R0

p.
The reduction is defined as:

• R! R0: replace Rp with R0

p;

• q ! q0: drop R and C2, · · · , Cd, and replace C1 with
C0

1 : mf  g1(x̄b1).

Again, C0

1 may be a self-comparison (if C1 is short), which
would be immediately removed next.

Example 5.4. Consider the following query with 2 inci-
dent comparisons on R1:

R1(x1, x2, x3) 1 R2(x3, x4, x5) 1 R3(x5, x6), x1  x4, x2 < x6

Figure 4 shows a running example of this query. Suppose
we reduce R1 first. The reduction can be written in SQL as:

SELECT x3, x4, x5, min(x2) as mf1
FROM R1, R2
WHERE R2.x3 = R1.x3 and R1.x1  R2.x4

In order to solve the reduction query e�ciently, we first build
a 1D range searching structure on R1 for each unique x3

such that, given any t = (x3, x4, x5) 2 R2, we can find the
minimum x2 in R1 with a matching x3 while satisfying the
comparison x1  x4. This becomes the helper attribute mf1
in R2. Note that the tuple (2, 2, 1) in R2 has mf1 =? as
no tuple in R1 satisfies x3 = 2 and x1  x4. Now we drop
R1 and x1  x4, while rewriting x2 < x6 into mf1 < x6.
Next, we reduce R3 as in the one-incident-comparison case,
which will append mf2 to R2. Now we drop R3 and rewrite
mf1 < x6 into a self-comparison mf1 < mf2, reaching the
base case.

To enumerate the query results, we rewind the reductions.
Starting from each tuple in R2, we first find all join tuples
in R1 with a matching x3 while satisfying x1  x4. The
enumeration procedure can be written as:

SELECT x1, x2, x3, x4, x5
FROM R1, R

00

2
WHERE R

00

2 .x3 = R1.x3 and R1.x1  R
00

2 .x4 and
R1.x2  R

00

2 .mf2

and we can further expedite the execution by using the range
searching structures. Then, for each partial join result in
R1 1 R2, we find all join tuples in R3 using a hash table
and visiting the tuples in sorted order of x6.

5.5 Putting Things Together
For a given acyclic CQC q and a join tree T supporting its

comparisons, we perform a series of reductions, each on an
arbitrarily chosen reducible relation R. It should be clear
that d, the number of comparisons incident to R is never
larger than dq, the degree of q. This is because each reduc-
tion reduces one leaf node of T , shrinks one long comparison,
while dropping a number of short comparisons.

To analyze the total cost, recall the following results from
the previous subsections.

1. if d = 0, the preprocessing takes O(N) time, and the
enumeration delay is O(1);

2. if d = 1, the preprocessing takes O(N logN) time, and
enumeration delay is O(1);

3. if d � 2, the preprocessing takes O(N logd�1 N) time,
and enumeration delay is O(logd�1 N).

After a series of reductions, the preprocessing times and
the enumeration delays add up. But since the query size is
considered as a constant, this does not a↵ect the asymptotic
result, summarized as follows.

Theorem 5.5. A full acyclic CQC q with degree dq can
be enumerated with delay O(logmax{dq�1,0} N) delay after
O(N logdq�I(dq�2) N) preprocessing time, where I(·) is the
indicator function.

Corollary 5.6. A full acyclic CQC q can be computed
in Õ(N +OUT) time.

6. GENERALIZED HYPERTREE DECOM-
POSITIONS WITH CQCS

Generalized hypertree decompositions (GHDs) [7] provide
a powerful framework for dealing with general CQs [11]
and CQCs [12]. By putting multiple relations into a bag,
GHDs convert a non-acyclic or non-free-connex query into
an acyclic free-connex one. The overhead is a larger prepro-
cessing time, since each bag must be precomputed. Thus,
one should use the GHD that minimizes the maximum pre-
computation time over all bags, which leads to various defi-
nitions of width.

More formally, Abo Khamis et al. [12] show that a CQC
q can be enumerated with Õ(1) delay after Õ(Nwidth(q)) pre-
processing time, where

width(q) = min
T 2G(q)

max
v2T

w(v).

Here, G(q) denotes the set of all GHDs of q that has only
short comparisons, and w(v) is the width of a bag v in the
GHD T . By using our algorithm to compute the GHD, we
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achieve Õ(1) delay after Õ(Nwidth⇤(q)) preprocessing time,
where

width⇤(q) = min
T 2G⇤(q)

max
v2T

w(v),

where G
⇤(q) is now the set of GHDs of q that meet our

acyclic conditions. Since G(q) ✓ G
⇤(q), width⇤(q)  width(q)

for any q. The actual improvement depends on the query q,
as well as w(v), which in turns depends on the given degree
constraints of the input (including cardinality constraints,
functional dependencies, and PK constraints). The exact
definition of w(v) is very technical; below we illustrate the
improvements on a few representative examples.

Example 6.1. Consider the following CQC:

R1(x1, x2), R2(x2, x3), R3(x3, x4), R4(x4, x5),

C1 : x1  x4, C2 : x1 � x5.

This CQC is not acyclic (the comparison hypergraph is
not Berge-acyclic). One valid GHD is u1 = {R1, R2}, u2 =
{R3}, u3 = {R4}. On this GHD, C1 is incident to u1 and u2,
C2 is incident to u1 and u3, so the comparison hypergraph is
now Berge-acyclic. After precomputing R1 1 R2, the query
becomes an acyclic CQC, which can be handled by our al-
gorithm. The preprocessing time increases to Õ(N + |R1 1

R2|), which is Õ(N2) in the worst case. If x2 is a primary
key (PK) of R1 or R2, then the preprocessing time becomes
Õ(N). On the other hand, this GHD cannot be used in [12].
They can only use u1 = {R1}, u2 = {R2, R3, R4}; u1 =
{R1, R2}, u2 = {R3, R4}; or u1 = {R1, R2, R3}, u2 = {R4},
all of which lead to Õ(N2) preprocessing time, even if x2 is
a PK.

Example 6.2. Consider the following CQC, which finds
all “dumbbells” in a graph, whose edges are stored in a rela-
tion R We impose a comparison involving the weights asso-
ciated with the edges of the two triangles that make up the
dumbbell.

R(x1, x2, w1), R(x2, x3, w2), R(x1, x3, w3), R(x3, x4),

R(x4, x5, w4), R(x5, x6, w5), R(x4, x6, w6),

w1w2w3  w4w5w6.

This CQC is not acyclic due to two reasons: (1) the rela-
tional hypergraph is not ↵-acyclic, and (2) the comparison
is not in the required form where either side should be de-
fined on variables from one relation. Nevertheless, we can
group the 7 relations (actually, 7 logical copies of the same
physical relation) into 3 bags: two triangles and the “han-
dle” of the dumbbell. Each triangle join can be computed
in O(N1.5) time [15], after which we apply our algorithm
on the GHD, which is the same as Example 4.2, by treating
w1w2w3 and w4w5w6 as new attributes of the two triangle
bags. On the other hand, this CQC requires Õ(N2) time to
preprocess in [12].

To keep the presentation accessible, we have only stated
the general result where a single GHD is used. It has been
shown [11, 12, 14] that the width can be further reduced by
using multiple GHDs. Our algorithm o↵ers improvements
in this case as well.

Example 6.3. Revisit the query in Example 6.1. As men-
tioned, if there is no key constraint, our algorithm has Õ(N2)

preprocessing time. It turns out that by decomposing the re-
lations and using di↵erent GHDs for di↵erent parts, this
can be further improved. For a variable x and a tuple t, let
deg

R
(t, x) = |�x=t(x)(R)| be the degree of t in R with respect

to x. We partition the tuples of R2 into the heavy ones and
light ones: the former have deg

R2
(t, x2) �

p
N while the

latter deg
R2

(t, x2) <
p
N . For the light R2 (together with

R1, R3, R4 in full), we use the same GHD u1 = {R1, R2},
u2 = {R3}, u3 = {R4} from Example 6.1. But now all tuples
in R2 are light, so we have |R1 1 R2|  N1.5. For the heavy
R2, we use the GHD u1 = {R1}, u2 = {R2, R3}, u3 = {R4}.
Because there are at most

p
N heavy values on x2, we can

bound |R2 1 R3| by N1.5 as well. Thus, the total preprocess-
ing time is Õ(N1.5). Note that by setting R4 to an identity
relation (i.e., x4 = x5), this CQC degenerates into the tri-
angle query. This implies that the Õ(N1.5) preprocessing
time cannot be improved unless the triangle query can be
improved, which is considered unlikely.

However, for this query, multiple GHDs do not help the
algorithm of [12] because neither GHD used above is allowed
in [12]. Interestingly, multiple GHDs do help them when x2

is a PK of R2 to reduce the time to Õ(N1.5). However, as
we see in Example 6.1, our algorithm can achieve Õ(N) time
with just one GHD in this case.

The last example is on a non-full query:

Example 6.4. The following query is a non-full version
of Example 6.1:

ans(x2, x4) R1(x1, x2), R2(x2, x3), R3(x3, x4), R4(x4, x5),

C1 : x1  x4, C2 : x1 � x5.

This query cannot be handled by our algorithm directly for
two reasons: (1) the comparison hypergraph is not Berge-
acyclic, and (2) it is not free-connex. However, we can
use the GHD u1 = {R1}, u2 = {R2, R3}, u3 = {R4}, which
fixes the two issues simultaneously. The extended query of
this GHD has an auxiliary relation û2(x2, x4), which forms
the free-connex subset. The preprocessing time increases to
Õ(N+ |R2 1 R3|), which is linear if x3 is a PK of R2 or R3.
In this case, the best time achievable in [12] is still Õ(N1.5)
while using two GHDs.

7. EXPERIMENTS

7.1 Experimental Setup

Prototype implementation.

We have implemented our algorithms in a system proto-
type on top of Spark, which we call SparkCQC. SparkCQC
contains three components: a (standard) SQL parser, a query
optimizer, and a core library. Recall that in each step of the
reduction, we are free to choose any reducible relation. Our
optimizer enumerates all possible reduction orders and tries
to find the best plan.

The core library is written in Scala and contains functions
that use standard RDD operations to implement the reduc-
tion/enumeration procedures described in the paper. This
allows us to inherit all the benefits of Spark: good scalability
through distributed processing, dynamic workload balanc-
ing, fault-tolerance, and the ability to work with a variety
of data sources and sinks. For example, we could run a
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Figure 5: Processing times of SparkCQC, SparkSQL, and PostgreSQL.
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Figure 6: Processing times under di↵erent selectivity.

graph pattern query (with comparisons) over a graph stored
in GraphX, or feed the query results of a CQC directly to
Spark ML without writing to disk.

Query processing engines compared.

We compare our algorithms with SparkSQL and Post-
greSQL. In order to get a sense of the hidden constant and
logarithmic factors in the Õ(N + OUT) bound, for each
query, we measured the time to read the input data from
disk and write the output to disk. This I/O cost can be con-
sidered as the minimum cost required to answer the query.
We also compare with the unranked version of [17] (called
“Any-K”). Their algorithm only supports full CQCs with
short comparisons, so we can only compare it on Query 6.

7.2 Datasets and Queries
We tested 5 graph pattern queries and 3 analytical queries.

The characteristics and the formal definition of each query
can be found in [18].

For graph pattern queries, we use some real graphs from
SNAP (Stanford Network Analysis Project). We store the
edges as a relation G(src,dst), so a graph pattern query
can be formulated as a CQ with self-joins on G. We created
two other relations O(node,deg), I(node,deg) that store
the out-degrees and in-degrees of the nodes, respectively.
The degrees will be used in the comparisons.

We tested 3 analytical queries on TPC-E data. TPC-E is
an online transaction processing benchmark that models a
financial brokerage house.

7.3 Experimental Results

Running time comparison.

Figure 5 shows the running times of the three systems on
all tested queries. Q2 requires finding all the triangles first,
so we only tested it on the smallest graph; the other graph
pattern queries were tested on the 3 larger graphs. On the
largest graph wiki, we used 16 workers; other experiments
were done with a single worker. Missing results indicate that
the system did not finish within the 24-hour time limit.

From the results, we can draw the following observations.
(1) SparkCQC provides a speedup from 9x to 68x compared
with Spark SQL, and 3x to 237x compared with PostgreSQL,
even not considering some runs which did not finish within
24 hours. (2) In many cases, the running time of SparkCQC
is close to the I/O time, which indicates that the constant
factor in Õ(N + OUT) is actually quite small. (3) For Q8,
the I/O time is much smaller, because Q8 is an aggregation
query with a small output size. (4) For most queries, Post-
greSQL has better performance than SparkSQL on a single
worker, but SparkSQL will run faster with more workers.

Selectivity.

The selectivity of the comparison predicates is an impor-
tant parameter for our algorithms, which directly a↵ects
OUT. However, it does not have a major impact on Spark-
SQL or PostgreSQL, as they cannot push down the predi-
cates, except the short comparison in Q3.

We performed a set of experiments to verify this claim
using Q1–Q3. We changed the comparisons in these queries
to the form f(x̄)+ k  g(ȳ), which leads to various selectiv-
ities by controlling the value of k. The experiment results
are shown in Figure 6, where measure the selectivity as the
ratio between OUT and the query size when k = 0. First,
from the results we see that the running time of SparkCQC
scales almost linearly as the selectivity, which is in turn
proportional to OUT, which is expected as the algorithm
runs in Õ(N +OUT) time and the output size often domi-
nates the running time. On the other hand, SparkSQL and
PostgreSQL cannot benefit from the smaller output size as
claimed.
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optimal join algorithms: [extended abstract]. In
PODS, page 37–48. ACM, 2012.

[16] M. Patrascu. Towards polynomial lower bounds for
dynamic problems. In STOC, page 603–610. ACM,
2010.

[17] N. Tziavelis, W. Gatterbauer, and M. Riedewald.
Beyond equi-joins: Ranking, enumeration and
factorization. In VLDB, volume 14, page 2599–2612.
VLDB Endowment, 2021.

[18] Q. Wang and K. Yi. Conjunctive queries with
comparisons. In SIGMOD, pages 108–121. ACM, 2022.

[19] D. E. Willard. An Algorithm for Handling Many
Relational Calculus Queries E�ciently. JCSS,
65(2):295–331, Sept. 2002.

[20] M. Yannakakis. Algorithms for acyclic database
schemes. In VLDB, page 82–94. VLDB Endowment,
1981.

[21] C. T. Yu and M. Z. Ozsoyoglu. An algorithm for
tree-query membership of a distributed query. In
COMPSAC, pages 306–312. IEEE, 1979.

62 SIGMOD Record, March 2023 (Vol. 52, No. 1)


